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1. INTRODUCTIO1

Both Artificial Intelligence and its first domain of

activity, automatic game-playing, have preceded the advent

of computers. Although some of this activity was fake

(e.g., von Kempelen's Chess Automaton), some implemented

algorithms in "hardware" (e.g., Torres y Quevedo's Rook vs.

Rook-and-King mechanical Chess player). Even Turing's and

Shannon's celebrated Chess programs were not run on an

actual computer.

It is outside the scope of this paper to discuss the

reasons and motivations for game-playing programs. We feel

that, apart from the intellectual challenge, the by-products

of such research justify the effort and resources invested.

In this chapter, we describe a long-term project aimed

at studying decision-making under uncertainty and risk, and

machine learning. We have used the game of w Poker as

the vehicle of our investigations 11-9]. As a conceptual

and, to a fairly large degree, technical continuation of

these efforts, we have engaged in more general,

context-independent studies on automatic analysis and

synthesis of strategies [10-20].

We first provide an updated version of two surveys of

our work published several years ago (5,61. It is followed

by a brief description of our current activity.

2. OQN DRAW POKER =AND DCSONPOCSE

The vehicle for studying decision-making must be

realistically complex, whether one wants to simulate -- and

not caricature -- human cognitive processes or to produce

intelligent systems whose performance may surpass that of

man. In contrast with one-person vs. Nature or two-person

confrontations, a multi-person game allows several

strategies to be compared with one another or with some

appropriate baseline measure. Futhermore, several human

players (situated possibly in different rooms) can compete

with machine strategies. Such a laboratory environment
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enables one to hypothesize and verify theories of human

decision-making, problem-solving and learning processes

inexpensively. It also allows Turing tests of a sort to be

conducted in which the subjects are asked to distinguish

human competitors from programs. Figure 1 depicts the

graphic display at a moment during the confrontation between
a human player and seven machine strategies.

FIGURE 1 ABOUT HERE

These were some of our reasons for choosing to study

Draw Poker, a game popular in many countries [21-26]. Its

simple rules (summarized in the Appendix) and limited range

of actions, coupled with the depth of analytical reasoning

required of any meaningful strategy, render the programming

effort invested in a large system "cost-effective". Human

players construct and continually modify mathematical models

of the game and psychological models of the opponents.

Eliciting information on these from them serves the whole

range of our research objectives, from generating a

sufficiency theory of human behavior to establishing wholly

machine intelligence-oriented competitive strategies. We

believe that -games of imperfect information, and those

involving both chance and skill, are more useful for certain

studies in Artificial Intelligence than games of pure skill

and perfect information -- without trying to belittle the

intellectual challenge, the depth and breadth of the efforts

needed for programming games in the latter category, such as

Chess or Go.

Poker shares many important features of decision-making

with "real-life" problems. Such are:

(A) In evaluating a na courss f actions, the

player assumes

(i) a likely "state of nature" based on subjective

probabilities,

(ii) plausible (not necessarily rational) actions
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FIGURE 1

A snapshot of the graphics display used as the interactive environment.
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by the other participants.

(B) The player can nani il±t informaion by

(i) "buying" information about the others'

situation,

(ii) giving away misleading information about his

own situation.

(C) Each player has limited financial resources, which

he has to manage optimally in the long run. His strategy is

the visible projecCion of his resource m stl.

His "policy decisions" (concerning, for example, investment

for the benefit of projecting a particular style) have

obvious analogues in commercial enterprises and political

campaigns.

(D) Decisions are made on the basis of probabilities as

well as of a dynamic assessment of the competitors, and are

guided by tactical and strategical considerations. Tactical

considerations refer to momentary and short-term goals (in

Poker, for example, within a betting cycle or a game)

whereas the strategical ones apply to the whole period of

interaction among the same participants (an evening of

play).

It is not our aim here to describe how and why Poker, in

fact mostly' its simplified and abstracted variants, have

been used by mathematicians, psychologists, economists and

military strategists D.eL se and to illustrate a wide range

of phenomena in other domains. Let it suffice to say that

Poker with its original rules and with more than two

participants cannot be solved by the mathematical theory of

games. A realistic analysis of Poker strategies has to

employ computer simulation.

3. THE POKER SYSTEM AND PLAYING STRATEGIES

The Poker system has evolved over many years and has

several times been reprogrammed. It consists of three major

modules:
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The Qxe.it e proqrm manages the flow of control and

information between the various components of the system.

It can also coordinate several interacting jobs. The

programs collect various statistics, supply public

and limited-access information to Player Functions, enable

the user to deal prearranged hands as well as those obtained

via pseudo-random number generators, help in debugging

Player Functions, provide tabulated probability

distributions originally derived from Monte Carlo

calculations (see below) , and direct the so-called

t mode of play. The tournament mode is designed to

eliminate the effects of runs of good or bad hands and of

biased seating patterns, similarly to the Duplicate System

used in Bridge tournaments. Suppose six players are seated

around the table at random and each is dealt a hand at

random. Altogether 6!5!=86,400 different hand-player-seat

arrangements are possible since one player can be anchored

to a constant seat. A tournament consists of a

user-specified number of games of different arrangements

selected at random without replacement from the 86,400

possible ones.

The Player F take the part of the players. They

interact with the Executive Program and the Utility Programs

by responding to game situations according to the different

ordered sets of decision components. A game situation is

determined by a player's own hand, and the past and current

betting and drawing behavior of all players. The

consequences of a game situation, of course, vary among

Player Functions. The game situation space can be

partitioned according to a structure pattern provided either

in advance by the user or, as described later on, by several

of the learning programs. The automation of partitioning

or, in other words, of the formation of equivalence classes,

is fundamentally important. We expand on this issue in our

account of the Bayesian players below.
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At the outset of the project we ran 'onte Carlo

calculations to tabulate various distributions of hands, to

derive a provisional partitioning of Poker hand classes, and

to obtain initial values for certain heuristic parameters

for some of the learning strategies.

In the following, we discuss the most interesting player

functions out of over 40 strategies we tested. Several of

these have not been reported on in [5,6].

3.1. Static Players

The static machine players can be characterized as rigid

control structures whose responses depend exclusively upon

the game process rather than upon the behavior of the

opponents. The decision trees constructed for these players

implement heuristics taken from the Poker literature or

established by our Monte Carlo runs. There are, however,

some additional static players. We single out the RH-player

(named after two graduate students, Jean Rachlin and Gary

Higgins) and the family of Mathematically Fair Players.

The R l follows the principle that a bet should be

directly proportional to the tablepot (TABLEPOT); and

inversely proportional to the number of people still alive

in the game (LIVE), to the number of raises occurred

(RAISECOUNT),-to the number of opponents still having a

chance to say something after him (FOLLOWERS), and to the

amount he has to put in the pot to stay in the game (RAISE).

Jean Rachlin and Gary Higgins found experimentally the
characteristic distribution of a measure of the probability

of winning,

TABLEPOT
RH = --------------------------- ()

LIVE*(RAISECOUUT+I)*FOLLOWEPS*RAISE

and the optimum partitions for Poker hands, in which an

approximately constant value of BE calls for a given action

in the game.

Ii
I.t
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In order to establish L azis of comparison and a

starting point for so:ie of tne learning programs, we

developed a family of players relying on the .lathematically

Fair Strategy (IFS) . The Lail bet is computed by equating

the expected value of winnings to the expected value of

losses:

k-i

pj.Bo(j,k) = (l-pj).[ 7aBa(j,m)+Bf(j,k)] (2)

Here, 
m=1

p is the probability of player j's w'inning a given
hand,

B (j,') is the total contribution of player 's

oppoo~tbo the pot up to the L-th betting cycle;

B (j,m) is player d's bet in the betting cycle m; and

B (j,k) is the fair bet to be made by player j in the
k-th ;etzii~g cycle.

As can be seen, this strategy ignores all the

second-order effects of the game-situational variables

(number of players folding, checking and raising; seat

arrangements; noture of opponents and games; etc.) and is

obviously incapable of bluffing. This is a serious

deficiency against sophisticated human and machine players

and the Statistically Fair Player (see below) amends this

problem. Bluffing is an essential part of Poker and has a

multi-purpose role. First, bluffing has a direct,

short-term monetary goal within a single ganme. By

under-representing a strong hand ("sandbagging"), the player

tries to keep other players in the game so as to increase

the size of the pot. Over-representing a weak hand may

result in gain over stronger opponents as well as it can ku.l

information about the other players. Namely, showdowns

provide the bluffing player with snapshots of the

relationship between the strength of the opponent's hands

and their betting behavior. (No showdown takes place if all

players but one fold. The bluffing player can force a

showdoyn by paying the price of calling.) Deciding whcn and

i



how far to bluff with a given hand and a given history of

play against a given set of opponents is one of the ].ey

issues in long-term money management. Another maor

objective of bluffing is to obscure and distort one's

strategy and thereby to keep the communication channels

noisy.

As said before, Equation (2) leads to a f of the

rathematically Fair Players (='s). ?,any Poker ezperts

recommend, for example, "not to throw good money after bad".

That is, a player should consider only the utility of his

c investment, an idea which is equivalent to ignoring

the summation term in the brackets on the right-hand side of

Equation (2). The respective fair bet values are returned

by the function FDET (full equation) and FBET2 (s.mmation

term omitted). Note that player functions that use FBET2

play more aggressively. Table I also contains FBET3 and

FBET4. FBET3 returns a bet one chip larger than FBET, and

FBET4 lies between rBET and FBET2.

Another distinction among the L_F's is the source of the

probability values, . If they come from tables obtained in

the Monte Carlo runs PROB in Table 1), these empirical

values grow less accurate as the number of players still in

the game diminishes. Certain efficient combinatorial

calculations, performed by TROB, a utility routine of our

system, provides theoretical probability values during the

pre-draw phase of the game. An extension of this

calculation also takes into consideration the number of

cards drawn by each opponent, and computes the theoretical

probability of winning for the post-draw hands (PWIN).

TABLE 1 ABOUT HERE

The 18 MFP's have been tested against a set of standard

opponents in runs of 15,000 games each. The runs were made

using the Tournament lode of the system, and players were

reseated every 50 games. In each run, two copies of the
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Pre-draw functions Post-draw functions
IName Betting~ Probability Betting Probability

MPP1 FBET PROB FBET PROB

MFP2 FBET TPROB FBET PROB

1M'P3 FBET TPROB FBET PWIN

VTP4 FBET2 TPROB FBET PROB

MFP5 FBET PROB FBET PWIN

YMFP6 FBET2 PROB FBET2 PROB

VYP7 FBET2 TPROB FBET2 PWIN

DIFPS FBET2 PROB FBET2 PWIN

IvM'P9 FBET2 TPROB FBET2 PROB

rV~'P10 FBET PROB FBET2 PROB

NTFP11 FBET2 PROB FBET PROB

hMYP12 FBET TPROB FBET2 PWIN

INFP13 FBET2 TPROB FBET PWIN

?rFPI4 FBET PROB FBET2 PWIN

MFP15 FBET TPROB FBET2 PROB

VIPP16 FBET2 PROB FBET PWIN

YY~P17 FBET3 4, PROB FBET3 PROB

M~FP18 FBET4 PROB FBET4 PROB

TABLE 1

The definition of the 18 variants

of the Mathematically Fair Strategy.
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being tested participated to reduce further the undesirable

"neighbor effects".

The selection of the opponents was based on the speed,

memory requirement and stability of the strategies

considered rather than their skill and sophistication. We

have therefore fixed a set of four static and two learning

players for the 18 runs to compare the ii_.'s. Figure 2

shows for each IFP five measures of quality:

.the final purse size after 15,000 games;

.the average purse size;

.the average win (or loss) per game;

.the "raw win", the percentage of games won by the

player;

.the "win ratio", the percentage of showdowns won by

the player.

Each of these measures are given as d from the

respective values averaged over the 18 players so as to make

it easier to compare them.

FIGURE 2 ABOUT HERE

We have classified the 18 IFP's into 28 classes

according to the betting functions used and the source of

the probability values. It would be informative to compare

quantitatively the performances of these classes nut the

figures and tables neccesary for it would make this chapter

intolerably long. Suffice it to say that, as we expected,

those jFP's that use theoretical probability values,

particularly after the draw, outperform those that use

empirical ones. Futhermore, an aggressive strategy based on

FGET2 before the draw, followed by a more cautious approach

based on the FBET after the draw, seems superior to all

other choices.

Finally, Figure 3 shows the five measures of quality, as

used in Figure 2, for "overall IiF_" averaged over the 18

variants and the five standard opponents, each again

averaged over all runs.
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FIGURE 3 ABOUT HEDE

The five opponents were

.the RF-player (alias Player 1);

.three additional static players whose strategies are

represented by decision trees: Players 2, 4 and 6;

.the first Bayesian strategy BSI; and

.the Adaptive Aspiration level player (alias ASPRATE).

3.2. Leanig laers

Learning any complex activity by humans is, in general,

a multistage process involving a number of interdependent

factors. Our study of human players was designed to

illuminate both the quantitative and qualitative aspects of

learning. Several of the human players' qualitative

techniques for adapting themselves to the game environment

have been incorporated in various machine players. These,

however, should not be considered as competitive,

independent strategies. Each learning player contains a

small number of dynamically changing knowledge components

added to some basic set of game rules. We have explored

numerous variants of these; namely, how they interact and

what influences the rate of improvement in their

performance. Besides our interest in various experiments on

machine learning, we study these learning processes as

models for descriptive theories of human behavior. Also,
the Quasi-Optimizer program of our current activity (see
Section 4) is designed to generate a normative theory for

the Poker environment.

Practically all the learning techniques we have

experimented with differ widely from those found in the

literature on machine learning. Because of the uncertainty

of game actions and their consequences in Poker, we have not

used the technique of the evaluation function, which weighs

the effects of various characteristic features, or the usual
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minimaxinq procedure. In the following, we describe the

esscntial elements of the learning strategies in our

project.

3.2.1. The Adaptive Evaluator of the Opponents (AEO)

This player starts with the knowledge necessary to

estimate its opponents' hands "roughly"; that is, to come up

with a short list of possible cases, on the basis of a few

(selectable) indicators. These can be the number and the

size of raises in the pre-draw and post-draw betting

sequences, and the number of cards drawn -- all these with

reference to the opponents' past record. It refines its

judgement of each of its opponents as their "personalities"

become better known. Every time there is a showdown, AEO

updates a statistical data base that correlates the

opponents' post-draw betting sequence and their hands.

We have divided the range of all possible hands into 20

partitions, using the principle of equally distributed power

of discrimination. Let SLi j) be some statistic (for

example, the ratio of actual bet to fair bet) of player j,

collected in partition j; and let mni iI and s iij) be its

mean and standard deviation, respectively. A updates

these values after each showdown. For reasons explained

below, a number of statistics are collected, such as the

ratio actual bet/fair bet, tablepot, last bet, total bet,

tablepot-last bet, (tablepot-last bet)/tablepot, total

bet-last bet, (total bet-last bet)/tablepot, total

bet/tablepot, played pot odds/fair odds, and various moving

averages of the above.

AEO's initial "rough" estimate of an opponent's hand

usually yields a small number of partitions in which the

hand is likely to fall. A learning process along three

dimensions can reduce this list of possibilities

considerably. The first d of learning consists of

collecting data for the above statistics. Initially, for

lack of data, the Mathematically Fair Strategy is assumed

and used for estimating hands. Later, but in the early
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stage of data collection, the statistical data are pooled

over jl partitions (of course, using each of the above typc

distributions separately) and compared with the current

value, for possible match. As soon as enough observations

are available in every partition, the current value of the
A

statistic, 5, is substituted into the predicate

A
IS - r(i,j) I % w(i).s(i,j) (3)

for all likely partitions. Here, wLiL is the weighting

factor for partition i, initially 0.1 . If (3) holds for

one partition, that becomes the estimate of the hand.

Otherwise, a learning process along the second i in

takes place. After the showdown, w-Li) is (A) reduced by 10%

for all partitions incorrectly estimated as "possible", and

(B) increased by 10% for the correct but not predicted

partition. The weighting factor thus converges to an

optimum value in each partition.

We have found that for different opponents different

statistical distributions work the best. This is because,

although all strategies have the same long-term objective,

namely to maximize monetary gain, they use different

variables as controllers and indicators in deciding which

subgoals to -pursue and how to achieve them. The third

dimension of the learning process consists of selecting the

most effective from among the above statistics.

The combination of the three learning processes produces

satisfactory estimates of the opponent's hand. The average,

over all players, of the absolute value of the difference

between the actual and estimated partitions is less than two

-- better for "good" strategies and worse for quasi-random

players. LM also automatically selects heuristics for

evaluation and playing, in a manner analogous to the

"Bayesian" approach discussed in Section 3.2.4.

3.2.2. T ai Ai o Level (AAL) Player

...I .... '
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Experimental evidence-, described in the psychological

literature and also found in our studies with human

subjects, indicates the existence of two complementary but

not necessarily incompatible attitudes expressed in

risk-taking environments. A situation or a sequence of

events may "turn on" either a loss-recovery (success-

oriented) or a profit-protective (failure-avoidance) mode of

operation. (We note here that an individual's behavior .ay

be guided by both needs, that is to achieve success and

avoid failure, at the same time. We hypothesize, however,

that the attendant anxiety would then disrupt any

quasi-rational strategy.) The success-oriented mode of

operation induces more aggressive game behavior and

(usually) higher bets. The failure-avoidance mode, on the

other hand, induces more conservative behavior and (usually)

lower bets. However, we considered the change in purse size

as a secondary variable whose effects on a player may depend

on another, possibly latent variable that is the response to

some stimulus configuration. This could be, for example,

the difference between the expected and actual gain or loss.

The a level represents a cognitive balance between

the cost of searching for better outcomes and the value of

satisfaction with a safe current status. It is computed by

comparing the expected losses incurred while modifying and

testing response rules, with the expected long-term gains

from improving one's play.

Our implementation was quite flexible in the following

way. An "activating mechanism" was established, which can

be a function of the change in the financial status, of a

significant violation of expectation (losing with a very

good hand), or of any experimentally corroborated

game-situational variable. The activating mechanism affects

the aspiration level, which in turn participates in a

two-stage decision process. The latter computes and

modifies the mathematically fair bet upwards or downuards,

depending on the aspiration level. In another variant of

the program, the strategy alters its "rough" estimate of the
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onponent's hands obtained by the technique of the Z player

before its learning process becomes active. ALL then makes

its bets according to such altered estimates. In either

case, a risk parameter appears in the formalism representing

the betting behavior. Different values of this parameter

can describe behavior ranging from very timid to extremely

wild.

3.2.3 llig and uying Images B

Better players are often willing to invest money in
simulating a playing style (conservative, sucker,

extravagant, etc.). It is an advertising expense, spent on

selling a particular image over a certain number of games.

The return on this investment is realized during critical

games; the buyers of the image are misled and lose heavily.

lith re-ard to the minimum required length of the

sel' nq phase during which stable, observable images are

induccj, there are some obvious starting points. The

farther an image to be sold lies from the mathematically

f.c7 strategy, the longer the seller has to present it (more

post-draw occurrences). In turn, a conservative player will

take longer to buy an image than an adventurous one.

We now introduce a use for bluffing not mentioned

previously. -Whereas to reproduce a mathematically fair

strategy is difficult even for an experienced player, to

adhere to some broad playing style is relatively easy.

Bluffing, as effected by its frequency and extent, is the

most direct means of projecting such a strategy. In other

words, the Hathematically Fair Strategy is modified by a

probabilistic component determined by the image this player

wants to sell. Also, basic betting heuristics can override

the fair bet action.

We have explored a number of ways to characterize the

opponents. Two dimensions of playing style seem to suffice

(cf. Section 3.2.5). The first is the level 2t consistQncy,

the second the level a utiousness. The two are not quite

independent as our experience with human subjects showed.
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For e:ample, a wild player is judged relatively consistent

by the others within a much wider range of some indicator

variable than a timid player. Or, one would expect a fair

player to bet more consistently than an extravagant player

would. With reference to the indicator variables, the

average win per game and the average loss per game measures

cautiousness whereas the scatter of the ratio between the

actual and the fair bet reflects the consistency of a

player. In another variant, we also tried to quantify the

opponents' levels of cautiousness and consistency with the

mean value and the standard deviation of the ratio between

played pot odds and the fair odds, respectively. The

advantage of using these statistics of a single variable as

indicators is that we can easily express the relation

between the two characteristic dimensions of card playing

style.

3.2.4. The Faily of "Bayesian" Strategies (BS) Z-Z Lake

In statistical decision theory, Bayes' criterion refers

to the choice that minimizes the average expected loss. In

our terminology, a "Bayesian" strategy continually readjusts

its decision-making rules on the basis of the outcomes of

its actions. -It collects data on certain characteristics of

situations and also on its average gains and losses with

various actions in these situations. Finally, this player

takes the most profitable action, as suggested by its

knowledge base, and updates the respective entries in it.

Such a technique should converge to an optimum strategy

against non-learning opponents.

Because of limitations in computing time and memory

space, only a few relevant features can be extracted from

the situations. The first and simplest Bayesian strategy,

B l, observed only its hand and assigned it to one of 11

classes. Moreover, it could take only three "actions", each

a strategy for the entire game. Subsequent Bayesian players

were e::tensions of MSI: CALLER2 also observed which opponent
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w\as betting against it; B3 obzerved hov n-any rounds of

betting had taken place; and SCH-F (named for Bill

Schneider, who programmed it) observed the value of the

winning hand in each game, and the maximum and average pot

with each hand value. All three players need larger tables

of results than B=I.

Another problem with Bayesian players is controlling the

amount of experimentation. In a given situation a player

must try each action at least once. BSl tries each action

once only, which sometimes causes a disorder that we call

n.ysin withdrawal. As an example, suppose that the first
time BSl holds a flush, it bets the limit, and is beaten by

a full house. This suffices to deter 2Sl from ever betting

the limit again with a flush, simply because its average

gain (over one game!) is negative. In our early Bayesian

players, the effect of Bayesian withdrawal was mitigated,

though not eliminated, by averaging the past results for a

class of hands with the results for neighboring classes.

SCHNE first plays a set number of games with a fixed

strategy, and thereafter bases its strategy on its previous

results.

During the past two years we have refined the Bayesian

model with a view to training it for human competition. Our

last model, BS8, incorporates several improvements over the

old BS3. The most significant change was to observe how

many cards the opponent draws instead of how many rounds of

betting take place after the draw. We also rewrote the hand

classifier to classify hands according to their "f-values"

instead of their Poker ranks. The D-value is the

probability of a hand's being better than a randomly dealt

one.

The consequences of an action in an early round of

betting are harder to judge than those in a late round. We

therefore made MS8 do more "forced experimentation", i.e.

deliberate deviations from recommended actions, early in the

game rather than in its later stages. Since even this

precaution will not necessarily prevent Bayesian withdrawal,
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we instructed 2 to continue making occzsional e;:perimentz

throughout a session. As a further precaution, We

implemented recency wichin, whereby after each game the

tables are multiplied by a factor slightly less than unity.

This factor is called the Diyi coefficient.

We also eliminated the practice of drawing four cards to

a high-card hand. The lore of Poker discourages drawing

four cards as a sign of weakness; our tests confirmed this

lore.

The great strategic weakness of the Bayesian model is

that it cannot learn to bluff. The main purpose of bluffing

with a poor hand is to encourage the opponents to bet when

you have a good hand. The basic Bayesian model ignores such

interactions. We therefore added a new module, the Bluffina

Suvervisor, to the Poker System. The Bluffing Supervisor

maintains statistics on all bluffs during a session and

computes how often a player ought to bluff. It turns a

naive player function into a sophisticated bluffer.

These improvements caused fS8 to play remarkably like a

human player. We conjecture that by observing one more

variable--the position of the dealer--BSS's strategy would

equal or surpass most human strategies. Of course, this

change would multiply the size of BS8's tables by the number

of players. Instead, we introduced a more effective

measure, the skill of the opponents. By monitoring its

opponents' play, BSS classifies their strength as expert,

average, or novice. For each strength, DSU maintains

separate tables, each with different oblivion coefficients.

We are still awaiting the results of extensive human

testing, which a private research group is performing. In

our own tests with human volunteers, BS8 held its own,

eventually showing a profit after converging to a sound

strategy.

3.2.5. b Statistically Fair Pag
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We noted in Section 3.1 that the Mathematically Fair

Players do not bluff -- a serious shortcoming against

sophisticated opponents. They can, therefore, be outguessed

by a strategy that recognizes this fact. The Statistically

Fair Player (SFP) implemented by Terence L. Roy 1271

eliminates this deficiency. It can also identify IZU or

near-MFP opponents and respond to them appropriately.
The SFP analyzes the statistics gathered on the other

players over all past games to adjust the frequency and

amounts of its bluffs. It attempts to adopt a style similar

to those opponents' whose strategy is not near the

mathematically fair one -- a common recommendation in the

Poker literature -- and to bluff heavily and often against

M and near-MFP strategies. (Such an approach makes sense

because most Poker end games, in the laboratory and in real

life, are two-person confrontations.)

The statistics collected are the mean value, M, and the

standard deviation, a, of the ratio between the odds played
and fair odds of each opponent. (The period over which the

data are used is the most recent 300 bets, with the last 100

being weighted double. Thus S2P also adjusts to changes in

the opponent's playing style.)

The program maps the relevant values of M and a into

measures controlling the frequency and extent of bluffing so

that VFR responds-to LIU and non-BFP players as described

above. This is a rather elegant and inexpensive technique

for characterizing the levels of cautiousness and

consistency exhibited by the other players.

Finally, we note that when several opponents are still

in the game, SFP weighs its response to them according to

their current purse size. In other words, richer (and

better) strategies are considered more important.

3.2.6. PrgLramming the Zadeh Stratg

A member of our group, C. E. Pearson, implemented [281

our first comprehensive strategy intended for humans as

distinguished from the isolated techniques from Poker books
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adcipzed by most c o, r oroviou playor fInctions. Ho

decided to approximate a mathematically and psychologically

well-founded strategy designed by Zadeh [25].

The cornerstone of Zadeh's strategy (indeed, of any

sound strategy) is the observation of what each player opens

with. Since the Poker System has no routines for doing

this, Pearson had to design and %,rite them. After he

modified our "mathematically fair" equation (2) to use

information about what hands each player opens with, he

obtained tables that agreed almost perfectly with Zadeh's

tables of probabilities and recommended actions.

Zadeh distinguishes three eventualities during the

betting: (1) all the opponents fold; (2) at least one

opponent raises; and (3) at least one calls, but nobody

raises. Pearson combined cases (2) and (3) to simplify the

algebra. The expected gain from raising is then the sum of

the opponents' contributions to the pot, multiplied by each

opponent's probability of losing by (i) folding or (ii)

being beaten in the showdown. The expected gain from

calling can be computed similarly.

Another component of Zadeh's strategy is bluffing. Good

players bluff rarely, but they do bluff. The Zadeh player

function uses- "Reflective Bluffing", a strategy well-suited

to a computer. According to the original proposal [29]:

"Suppose a player wishes to bluff h percent of the time. If

his hand lies in the 11-th percentile from the bottom, where

n < b, then ... he would pretend that his hand i in the

n-th percentile from the top." This elegantly implements

Zadeh's dictum: "Bluff with your worst hands." It also tends

to deter opponents from calling a bluff; when a player w.ho

uses it seems to hold a very good hand, there is a 50%

chance that he really holds it.

To consider its opponents' bluffing frequencies, the

Zadeh function must recognize when an opponent has bluffed.

Pearson's implementation simply counts the times an opponent

shows a hand too weak to open with. Though it neglects ta.

times an opponent folds or improves after having bluffed, it
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appears to be goou enough f r practical pur 7oses.

The final function won a.gainst the static strategies

convincingly. I:e coulu riot obtain enouiu core -.e-or% to

test the Zadeh function against other learning strategies.

3.2.7. SA r.,, B un

Figure 4 shows the chance in purse size vs. the game

nu mber for six corpeting strategies over 15,000 games.

The participating players are:

.the Adaptive Evaluator of the Opponents (AEO), PLAYER9;

.the Adaptive Aspiration Level (LAL) player, ASPRATE;

.the strategy Selling and Buying Player's Images ( L1),

7:'PLOIT ;

.the first Dayesian Strategy, 1._,31;

.the fourth 5ayesian Strategy, SCHNE;

.the eighth Bayesian Strategy, LS8.

Sorme comments are necessary. BSI learns much faster

than L but, asyr-ptotically, it is inferior. (Note that

Sl has reached a plateau after about 14,000 games whereas

BS8 monotonically improves after about 9,500 games.) Z.S is
"egocentric", perceiving only its own hand as a

situation-descriptor. Therefore, the type and number of the

opponents and their actions do not matter. In contrast, =

does observe the opponents' actions. Powever, to save

memory space (an( also because L w.as originally designed

to play against a single human oppon, °, i .,es not

distinguish between the other strategies. Of course, one

has to pay a price for such an over-generalization in BSS's

playing quality under such conditions. PS8 does win "hands

do,,n" when in its element, tw:o-person games, after a

sufficiently long training period.

FIGUIRE 4 ADOUT HERE
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4. CUR REN ACTIVITY

Relying on the experience gained in the work described

above, we are now engaged in a long-term effort aimed at

automatic analysis and synthesis of strategies. Our

objectives can be summarized as follows:

.to identify adequate computer representations of static

and learning strategies, which representations can then be

.effectively and efficiently employed both in a simulated
world and in direct interaction with the real world;

.to develop techniques which analyze strategies, measure

their performance, and identify and evaluate their

components ("credit assignment"), under most or all

conditions;

.to observe strategies in action--either in a sequence

of unperturbed confrontations with others or under

"laboratory conditions" when the environment is specified

according to some experimental design--in order to generate

computer models ("descriptive theories") of them;

.to combine the best components of several strategies,

eliminate the redundancies and inconsistencies among these

components and produce a strategy that is normative in the

statistical sense;

.to establish stochastic, causal relationships between

open variables that can be measured at any time and hidden

variables whose values can be identified only intermittently

or periodically, in order to find out the actions of a

strategy, and their underlying reasons and consequences;

.to create a system that can be taught strategies via

principles and high-level examples, able to make inquiries

about vague, incomplete or contradictory advice, and to
apply, evaluate and improve the strategy so acquired.

Next we describe the major characteristics of three

projects in this area.

4.1. The Ouasi-Optimizer _Q0 Systam
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Let us consider an environment in which either several

organizations are competing to achieve an identical,

mutually conflicting goal, or else a set of alternative

strategies exist, each trying to win against an identical,

opposing strategy (7,11,191. (One can assume, for the sake

of generality, that a 2DU vector is specified whose

components need not be independent in real-life

confrontations; for example, in air battle management, the

ratio of targets accessed and enemy air defense units

suppressed are obviously inter-related goal components.)

Each strategy evaluates the environment by measuring

certain variables (numerical or symbolic) available to it,

which the strategy considers relevant. Such variables may

be the real or assumed actions of the adversary, the

perceived state of the confrontation, availability and

capabilities of friendly forces, threat estimates,

criticality and vulnerability of the adversary's and our

resources, etc. An important component of a strategy is

interpreting these measurements and incorporating them in

the process of making decisions that can lead to

goal-achievement (and to prevent goal-achievement by the

adversaries).
The environment as perceived by the strategy is unclear

because some information may be unavailable, missing (risky

or uncertain, according to whether or not the relevant a

priori probability distributions are known, respectively) or

obscured by noise (caused accidentally or by deliberate

obfuscation). If the decisions based on such incomplete or

inconsistent information are less sound than those of the

adversaries, resources will be wasted and goal achievement

will be farther removed.

Let us now consider how we could generate a new

strategy. The system has to generate automatically a model

(a descriptive theory) of every participating strategy

through observation and measurements. It then has to assign

to each component of the models some measure of quality;

that is, an outcome-dependent allotio. 2L credit must be
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made.
The strategy obtainable from the best components of the

model strategies is a normative theory which is potentially

the best of all available ones, on the basis of the

information accessible by us. This normative strategy is in

fact only guasi-optimum for four reasons. First, the

resulting strategy is optimum only against the original set

of strategies considered. Another set may well employ

controllers and indicators for decision-making that are

superior to any in the "training" set. Second, the strategy

"is normative only in the statistical sense. Fluctuations in

the adverse strategies, whether accidental or deliberate,

impair the performance of the QO strategy. Third, the

adverse strategies may change over time and some aspects of

their dynamic behavior may necessitate a change in the QO

strategy. Finally, the generation of both the descriptive

theories (models) and of the normative theory (the Q0

theory) is based on approximate and fallible measurements.

The system under development employs the following

modules:

4.1.1 The Q [111 assumes a monotonic strategy

response surface and uses either exhaustive search or binary

chopping to construct a descriptive theory of static

(non-learning) strategies.

4.1.2 The 2Q"2 J15. extrapolates a finite sequence of

learning trees, each representing the same strategy at

different stages of development, and computes their

asymptotic form. The latter will then be used in

constructing the normative theory.

4.1.3 The Q3. [1J minimizes the total number of

experiments QO-1 has to perform. It no longer assumes that

the strategy response surface is monotonic and will

eventually also deal with multi-dimensional responses. QO-3

starts with a balanced incomplete block design for

experiments and computes dynamically the specifications for

each subsequent experiment. In other words, the levels of

the decision variables in any single experiment and the
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length of the sequence of experiments depend on the

responses obtained in previous experiments.

4.1.4 The 0-4 performs the credit assignment. That is,

it identifies the components of a strategy and assigns to

each a quality measure of the 'outcomes'. An outcome need

not be only the immediate result of a sequence of actions

prescribed by the strategy but can also involve long-range

consequences of planned actions.

4.1.5 The 00-5 constructs a 'Super Strategy' by

combining strategy components associated with outcomes of a

quality above a threshold value.

4.1.6 The 0-6 generates a Quasi-Optimum strategy from

the Super Strategy by eliminating its inconsistencies and

redundancies. It also tests and verifies the QO strategy

for completeness.

4.2. The Advice Taker/Inauirer System (AT/1)

The objective of this system [8] is to establish a

man-machine environment in which a human advisor can teach

strategies of confrontation on-line, through pin and

high-level examl. The principles and examples normally

consist of situations and recommended actions. (Principles

describe rather general situations defined in a flexible

manner whereas examples are specific and illustrate

appropriate behavior in a general situation by analogy with

a particular one. Actions can either adhere to some general

guidelines or follow a set of sharply defined

prescriptions.) Whenever the system finds the advice given

to be vague, incomplete or inconsistent with previously

imparted knowledge, it makes inquiries and asks for

clarification. The advisor can define and re-define the

components of a principle at any time. He can also override

temporarily the strategy taught so far by issuing an order.

The system does not start out with a blank memory. It

knows the rules governing the confrontation, the variables,

and the ranges of their values within the situation space.

The advisor can at any time



24

(i) define variables, functions, general and specific

actions, confrontation-related adjectives, nouns and
verbs--in terms of constants, confrontation parameters,

current values, overall and moving averages of

statistical values, basic confrontation actions, and

Boolean and relational operators;
(ii) define principles of a strategy which connect a

situation (specified as a Boolean combination of ranges

of statistical variables--again current values, overall

or moving averages) to some general or specific action;

(iii) give high-level examples by connecting sharply

specified situations to direct confrontation actions;
(iv) make inquiries about definitions, principles, and

values of statistical variables stored so far;

(v) issue an order which temporarily overrides the

strategy acquired so far.

In turn, the system can

(a) ask for clarification whenever new definitions are

vague or conflict with stored ones, or the strategy is

incomplete in not covering the whole confrontation

space;

(b) return exemplary actions in user-specified

confrontation situations, in accordance with the

strategy acquired;

(c) display definitions, principles, confrontation

parameters, values of variables, etc.

Random number generators also have a role in defining

game-theoretically mixed strategies. A sense of time has

also to be incorporated in the "tool kit" of definitions,

whether it refers to real time or to an event counter.

We note two important facilities to be used in

specifying principles. Let us call these Advisor-Assigned

and Advisor-Defined Adversary Types (AAAT and ADAT,
respectively). In the former case, the advisor aigns a
certain adversary to one or more categories (Adversary

Types) named by him. In the latter case, the advisor

defines categories by Boolean combinations of ranges of
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statistical variables, which are regularly or continually

collected over the adversary's actions. (The variables can

refer to current values, or overall or moving averages.) At

prescribed intervals, the system compares the adversary

behavior with the specifications of all ADAT's.

Accordingly, each adversary (at that time) may belong to

various Advisor-Defined Adversary Types. Thus the principle

can prescribe an action for all suh adversaries that

satisfy the definition conditions of the Adversary Type at

hand.

Advisor-defined nouns can reasonably be required to be

unambiguous. However, adjectives (and, to some extent,

verbs) must often have different meanings when used to

modify different types of nouns (cf. a "strong attack" vs. a
"strong concentration"). The AT/I system has to distinguish

(at least) four different classes of instances:

(i) Patent: confrontation parameters, statistical

variables, AT/I's own resources (e.g., "If your air

superiority is more than 2:1, seek air battles.")

(ii) Interactive: the adversary's actions during current

confrontation (e.g., "If the adversary is bringing up

additional resources, assume a holding position.")

(iii) Statistical: accumulated data about the

adversary's past behavior (e.g., "If the adversary is

self-confident, make sudden attacks.")

(iv) Inferential: assumptions about the intentions or

events behind the adversary's behavior (e.g., "If the

enemy appears to have received additional supplies,

wait for confirmation.")

This classification is neither exhaustive nor exclusive.

If the Definition Manager, a part of the programming system,

cannot decide unambiguously how to classify components of

the definition, it has to consult the human advisor.
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Another difficulty rests with the need to resolve a

situation-dependent conflict between principles of global
and momentary relevance. Furthermore, the system must be

able to generate disambiguating questions whenever the

advisor specifies inconsistent priorities for the

principles.

Finally, we note that to teach a strategy by telling bw

to do things in general is more efficient and less

error-prone than to tell wxat to do in every relevant

situation. An AT/I-like system would have practical

usefulness in doing this. Human experts would specify, via

a sophisticated interaction with the machine, a number of

alternative strategies. Other components, such as a QO-like

system, would then generate uniformly structured models of
each strategy. A prescriptive, quasi-optimum strategy would
then finally be constructed from these.

The system under construction employs the following

modules:

4.2.1 The AT/I-I constructs the framework for the flow
of information and control between the AT/I system and the

advisor.

4.2.2 The AT/I-2 converts the principles and high-level
examples into a canonical form and stores them. Next it
embeds them into an initially skeleton strategy which then

becomes employable.
4.2.3 The ALj- eliminates inconsistencies and

incompletenesses from the strategy acquired, in part by

interacting with the advisor.

4.2.4 The AT!I-4 tests (verifies) and evaluates the

strategy constructed according to a metric which is

independent of any particular strategy.

*4.3. Generalizd P c Ru Sem (GPflI

1

1 . .. . . .. . •t l l , , I I Il
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The underlying motivations for the actions prescribed by

a strategy, the actions themselves, and their consequences

are not necessarily observable and measurable at any desired

time. The values of such hiden variables can be identified

only at certain times, either intermittently or

periodically. At other times, their values have to be

estimated. In contrast, the o a_ g are readily

measurable at any time. The estimation is based on

generalized production rules expressing stochastic, causal

relations between open and hidden variables. Either can be

,cause or effect. The GPR system [10,12,16,18] is designed

to provide decision support for expert systems in need for

numerical estimates of hidden variable values.

A knowledge base is established over a period of

measurements. It consists of an ordered set of generalized

production rules of the form

W /M k/T -0 V (H ) Q (4)
r ijk jm m n r

Here Wr is the number of rules that have been pooled to form

the r-th rule. M is the j-th combination of the

parameters of the -th basic pattern (morph) [13] describing

the behavior of the k-th open variable (OV). Tjm is the

difference in time (timelag) or in space (distance) between

the start of the j-th morph (in case of a trend) or its

occurrence (in case of a sudden change or step function),

and the point of time or space at which the n-th 1IV, Hn

assumes its r-th value, Vm. This difference may be

positive--when the OV is the cause and thus precedes the HV,

the effect--or negative in the opposite case. The term

'lag' is used for T whether it refers to a timelag or

distance. Or is the credibility level of the -th rule. It

lies between 0 and 1, and depends on two factors:

.how well the morph fits the datapoints over its domain,

and
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-how many and how similar the rules were that have been
pooled to form the rule at hand.

When an estimate of a HV value is desired at a certain

value of the lag variable, the user has to provide ir, its
vicinity a sequence of values of all available OV's that are

assumed to be causally related to the HV. These sequences

are then submitted to the morph-fitting program (MFP). The

system then looks in the knowledge base for the U best

estimates (L specified by the user) coming from rules that

.connect the IIV sought and the available OV's;

.refer to the same type of morph as the newly fitted

one;
.involve morph parameters and lag values that are

"similar enough" to those in the query, i.e. that are within

the user-specified range of pooling rules.

The so-called confidence level of the estimate, Ce,
depends on the credibility level of the rule used as well as

how well the new morph fits its datapoints and how close its

parameters are to those of the morph matched in the

knowledge base.
Let us now assume that the estimation is performed and

up to S values of the HV are returned for each lag value
that yields such k possibility. The system will calculate

the average of the 11 estimates weighted by their confidence
levels. This process thus provides datapoints, each

specifying weighted average IIV vs. lag value, over the whole
range of interest. The system then finally invokes the MFP

to produce the functional form desired. Its validity is
based on the assumption that the OV's, whose morphs were
used for the estimation, obeyed the same laws when the
observations were made for the knowledge base as when they

were measured for the estimation. Furthermore, the
relations between and within the groups of OV's and IIV's do

not, statistically speaking, vary over time.

The system employs the following modules:
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4.3.1 The GPr-1 fits a minimal set of basic patterns,

morphs, to a sequence of open variable datapoints.

4.3.2 The GPR-2 establishes rules between sets of

parametric values of morphs describing open variable

behavior and individual values of hidden variables.

4.3.3 The GPR-3 pools rules that connect the same open

variable and hidden variable and satisfy certain statistical

and rule-generation criteria. The number and credibility

of rules increase with experience.

4.3.4 The GPR-4 estimates the values of hidden variables

*at desired time points.

4.3.5 The GPR-5 extends the system to distributed

processing and intelligence. It merges source files and

knowledge bases, established by satellite computers at

different observation points, if certain statistical and

file-generation criteria are satisfied--as verified by the

system automatically.

4.3.6 The GPR-6 extends the system's capabilities to

estimating the fiona l of hidden variable

distributions rather than estimating only individual values

of hidden variables.
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APPENDIX

Outline oaf theg Rue 2t Draw Poker

Ag J ye b tlle SN-Buffa lo~ Poker Sytp

A standard 52-card pack is used. After each game, the

turn to deal passes to the left. Before each deal, every

player pays a fixed number of chips (the ante) into a pool

(the W=t) which will ultimately be awarded to the player

with the best hand.

The dealer deals five cards face down to every player.

The game then passes through six States:

1. Pre-draw opning state. Starting with the player at

the dealer's left, each player either D by announcing a

bet and paying the stated amount into the pot, or checks

(i.e. passes) by betting nothing. As soon as some player

opens, the game enter State 2. If no player opens, the same
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player shuffles the cards and deals again.

2. Pre-draw betting state. Every player in turn may

fld (i.e. drop) by paying nothing and withdrawing from the

garie, call by paying enough to make his total contribution

equal to the current bet, or raise by increasing the bet and

paying enough to make his total contribution equal to the

new bet. State 2 ends when each player has either met the

current bet (i.e. stayed alive) or folded.

3. Drawing state. Each active player in turn may

discard some of his cards face down. (In real games of

Poker, it is customary to limit the exchange to three

cards.) The dealer gives him the same number of new cards

face down from the undealt portion of the pack.

4. Post-draw aiLsate. This state is just like

State 1 except that players who have folded do not take part

and if no player opens, the game proceeds to State 6.

5. post-draw bti state. This state is just like

State 2.

6. Showdown state. The players who have not folded

reveal their hands in unison. The player with the

highest-ranking hand wins the pot. In a tie, the winners

share the pot equally.

In descending-order of strength (and rarity), the nine

types of Poker hands are:

1. Straght ilush: five cards of the same suit and in

sequence; e.g., H9-H8-H7-H6-H5.

2. Four f a Kind: four cards of the same rank; e.g.,

SK-HK-DK-CK-H6.

3. Lull House: three cards of one rank and two cards of

another; e.g., S2-D2-C2-HJ-CJ.

4. Flush: five cards of the same suit; e.g.,

DA-DlO-D8-D5-D3.

5. Stright: five cards in sequence, regardless of

suit; eg., 115-C4-C3-S2-HA.

6. Three of A Kind: three cards of the same rank; e.g.,
H10-DIO-ClO-DA-C4.
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7. = Pair: two cards of one rank and two of anothc.;

e.g., S9-C9-H5-C5-H8.

8. Pair: two cards of the same rank; e.g.,

D6-C6-SlO-C5-12.

9. High-ard: a hand belonging to none of the above

types; e.g., SA-CQ-119-S8-S4.

The cards rank Ace (highest)-Iing-Queen-Jack-10-9-8-7-6-

5-4-3-2(lowest), except that in straights and straight

flushes the Ace may rank high (A-K-Q-J-10) or low

(5-4-3-2-A). Hands of the same type are adjudged by the

,ranks of their cards; for example, K-K-3-3-6 ("kings up")

beats Q-Q-J-J-A ("Queens up"), and 9-9-9-3-3 ("nines full")

beats 8-8-8-K-K ("eights full").
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